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The low Mach number sound field induced by the motion of line vortex filaments 
coupled to a two-dimensional semi-infinite duct is determined by means of 
a singular perturbation technique. Using the method of matched asymptotic 
expansions, solutions for the sound field are obtained by matching with an 
‘inner’ region of incompressible flow. The radiation field induced by the 
emergence of a single vortex from the channel exhibits the edge scattering effects 
typical of half-plane problems. The sound field intensity is found to have angular 
dependence on sin2 $0, where 8 = 0 defines the exterior axis of symmetry. When 
a vortex pair propagates out of the duct however, the special symmetry of the 
fluid motion causes cancellation of the scattered field from the duct edges. In  
that case the sound field is driven from sources located at the duct exit. We 
show that this result is consistent with the general theories of both Curle and 
Powell. The sound field is essentially induced by a dipole at the exit plane of the 
duct, part of which drives a coupled weak monopole, while the remainder corre- 
sponds to an axial ‘ edge force ’ originating in the r-4 velocity singularities a t  the 
duct edges. 

1. Introduction 
The work which follows was motivated by an interest in sound radiation in 

the presence of solid surfaces, from fluid flows containing concentrated vorticity . 
In  general, two-dimensional, unsteady, compressible, rotational flows are not 
amenable to analysis, and few exact solutions have been found. Stiiber (1970) 
and Rahman (1971) have considered the sound field generated by a vortex pair 
near an infinite rigid plane. The surface effect in this case is essentially trivial, 
resulting in a reflexion of the sound field by the plane (Powell 1960). The general 
scattering theories developed by Ffowcs Williams & Hall (1970), Crighton & 
Leppington (1970, 1971) and Jones (1972) predict powerful and interesting 
effects when flows are coupled to large inhomogeneous solid surfaces. Recent 
attention has been concentrated on geometries involving edge scattering, and 
Qighton (1972) has solved the problem of sound generation by a line vortex 
interacting with a semi-infinite rigid plane. His results confirm the prediction 
of general scattering theory that sharp edges support powerful sources of sound 
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and he determines the source strengths. This paper adopts Crighton’s analytic 
scheme to study the sound generated by vortices exhausting from a two- 
dimensional semi-infinite duct. The vortex axes are parallel to the duct edges 
at  all times, and the problem of determining the acoustic field is posed in a par- 
ticularly simple way. Providing that the vortices are sufficiently weak, and the 
circulations of the correct sense, the vortex system will propagate out of the 
channel with a speed which is always small in comparison with c, the speed of 
sound. The path followed by each vortex is virtually straight, except near the 
mouth of the channel, and because of this the effective ‘ source ’ region is confined 
to the compact vicinity of the channel opening. Radiation occurs only while the 
vortices travel on curved paths near the mouth of the duct. Thus it is appropriate 
to consider the problem as one of singular perturbation type, the small parameter 
M being the ratio of L, the length scale of the unsteady vortex motion, to a 
characteristic acoustic wavelength A, set by the vortex propagation velocity. 
The acoustic field is determined by matching an ‘inner’ incompressible field 
scaling on L to a wave field scaled on the acoustic wavelength. The ‘inner ’ field 
is determined by conformal transformation. 

In §§ 2 and 3 we consider the motion of a vortex pair coupled to a semi-infinite 
duct. The unsteady flow field is symmetric with respect to the duct axis, and as 
a result edge scattering effects cancel. We find a solution for the sound field 
that is acoustically equivalent to compact dipole and weak monopole sources 
acting at  the duct exit, the dipole term constituting a force acting in the axial 
direction 6 = 0. Ffowcs Williams & Gordon (1964) pointed out the likelihood 
of there being both monopole and dipole exit plane sources, and recent work 
(Ffowcs Williams et al. 1972) has drawn attention to the interdependence of 
these sources. 

Since edge scattering effects are weak we are able to apply Curle’s (1955) 
theory, in which he extended the results of Lighthill’s original papers on aero- 
dynamic sound (1952, 1954) to include the effect of solid surfaces. Using the 
symmetry properties of the flow, we find that Curle’s results predict an acoustic 
field generated by a distribution of sources on the exit plane, which is equivalent 
to a compact dipole source with directionality cost). Such a force would drive 
an induced mass flow from the duct interior, and we would expect the dipole 
and monopole strengths to be coupled. The coupling, however, is not straight- 
forward since there exists on the sharp edges of the duct a force producing 
singularity in the pressure field. We find that this force generates an axial dipole 
which is additional to that supported by the unsteady thrust at the exit plane. 
The thrust-generated dipole is simply connected to a monopole representing the 
volume response of the interior channel flow. These coupled sources generate a 
field that vanishes at 8 = 0. The behaviour is consistent with the view that the 
solid duct surfaces support dipoles with axes normal to the duct axis. Only an 
axial force, supported by an edge singularity, can generate finite dipole sound on 
the duct axis. We find the strength of this edge force to be equal to the vortex 
source strength given by Powell (1964). Powell’s source, pow x u per unit volume, 
is therefore only a part (but arecognizable part) of the fiill source field. The sound 
field can therefore be regarded as driven (i) by pressure forces acting across a free 
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surface within the duct which are coupled to an induced mass flux, and (ii) by 
a volume distribution of dipole sources of strength pow x u. Since w may be 
represented by delta-function singularities at  the vortex centres the vector 
w x u takes a particularly simple form in our problem. The essential results of 
$$ 2-4 are: first, the determination of the dipole and monopole source strengths 
in terms of the vortex parameters, and second, recognition of precisely how the 
various source elements are in ter-related. 

In  $ 5  we determine the motion of a single vortex exhausting from a duct, and 
in this case, since the unsteady motion is no longer symmetric about the duct 
axis, the normal efficient edge scattering is recovered. The sound field is quali- 
tatively equivalent to that obtained from edge scattering by a half-plane in two 
dimensions, and has an angular dependence of sin24/3 on intensity. We show 
how the source strengths can be calculated, and compare the efficiency of the 
duct as a radiator of energy into the sound field with the efficiency of a half-plane, 
using the results of Crighton’s (1972) paper. 

2. Incompressible flow 
To gain insight into the length scales involved in the motion of a vortex pair 

coupled to a semi-infinite duct we suppose that the fluid is incompressible. 
Consider two-dimensional motion in a complex-{ plane with co-ordinates de- 

fined by 5 = 6 + ir. Let 6 + in and 6 -in, where - 00 < 6 < + 00, define the walls 
of an infinite channel in this plane. We determine the instantaneous complex 
potential due to a negative line vortex at  

Co = to+i(n-6), 6 < n, (2.1) 

and a positive line vortex of equal strength K at the complex conjugate point to. 
The action of the unbounded channel walls can be represented by an infinite 
image system, and by summing the velocity induced at  a point {by all the vortices, 
we obtain an equation for the complex velocity from which the complex potential 
Q({) can be deduced: 

d!2 - K  - = -(cot *i([- C0) - cot *i([- to,,>. 
4n 

Integrating (2.2) with respect to 6 we find that the complex potential can be 
written as 

where y( t )  is an arbitrary function of time. 
The vortex pair maintains its symmetry with respect to the 6 axis, and the 

image system as a whole remains on a line parallel to 07 which propagates with 
constant velocity in the 6 direction. When 6 = in-, the total velocity induced by 
all the members of the image system at any individual vortex is zero, and accor- 
ding as 82 in the propagation velocity is greater or less than zero. 

5-2 
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FIGURE 1. Path of vortex near upper plate: 6 = 0-34. 

Let co-ordinates in the complex-2 plane be represented by 2 = x+iy. The 
conformal mapping 

8 = e < + c  (2.4) 

maps the infinite channel in the 5 plane to a semi-infinite channel in the 2 plane 
with walls defined by 

2 = x+in ,  -co < x < -1 .  (2-5) 

6 = fV), (2.6) 

Let f (2) be an implicit function such that 

then the complex velocity in the 2 plane is 

dQ - = ZL - iv = 
dZ 4n 1 (A) {cot @(f(Z) - f (8,)) - cot &i(f(Z) - fz))), (2.7) 

and the complex potential is 

To determine the paths followed by the vortices, we evaluate the complex 
velocity a t  Z,+e (or Zoi-e), where Is] 4 I. The O(1) term in the expansion of 
dQ/dZ in increasing powers of e gives the instantaneous velocity of the vortex 
at 8, (or go). We obtain 

Since f ( 2 , )  is only known in implicit form we have to determine the vortex 
paths by successive numerical integrations, at each step solving for f(2,) given 
the value of Z,,. We have computed vortex paths for various values of 8, and 
figure 1 illustrates a typical result when 6 < in. In  general the paths are asym- 
metric with respect to the nearest duct wall, although as S -f 0, a + 6. The 
maximum speed is achieved near t = 0 and is approximately twice (K/4n) cot S, 
the asymptotic value of the propagation velocity deep inside the duct. Outside 
the duct as 5 +- - co, the vortex speed tends to 

1 K ”( 4n Im~ , - I rn f (~ , ) )  N G’ 

When 6 > &r the vortices still travel on curved paths near the duct exit, but in 
this case they deviate towards the duct axis and then propagate on in a straight 
line to x = + co. As S + n, the limit of the vortex paths is the straight line y = 0. 
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We conclude that the vortex motion has a length scale, L say, which is of the 
same order of magnitude as the duct width and a velocity scale U which depends 
on both L and the vortex strength K.  In the next section we suppose that the 
fluid is slightly compressible and use these results to formulate a singular per- 
turbation problem for the sound field. 

3. Sound field induced by a vortex pair 
Suppose that U and L denote the velocity and length scales of the vortex 

motion. We assume now that, the fluid is slightly compressible in the sense that 
the Mach number M = U / c  1 (c is the speed of sound). Appreciable sound 
radiation only occurs while the vortex pair is near the mouth of the duct, SO 

we can characterize the period during which radiation is significant by T = L/U. 
During time T, sound travels a distance cT = LH-l, and we assume that this 
distance is much greater than the width of the channel, as indeed it must be 
for sufficiently weak vortices. We introduce ‘ outer’ co-ordinates (x‘, y’) scaled 
on the acoustic wavelength LM-1, and ‘inner’ co-ordinates ( X ,  Y )  scaled on L; 
the systems are related by 

In addition, we introduce non-dimensional time and frequency variables T and 

(XI, y‘) = ( M X ,  M Y ) .  (3.1) 

w, such that 

and employ the following notation: 

T = T-%, a = TO, 

I x’ + iy‘ = r eie, 

Z = X + i Y  = Reie (3.3) 

( ( r ,  0) and (R, 0) are polar co-ordinates). 
The singular perturbation problem can now be posed by looking for the 

appropriate form of the equations of motion in two distinct limits of small Mach 
number. The implications of the two sets of dimensionless co-ordinates defined 
above have been examined by Obermeier (1967) and Rahman (1971), and here 
we simply state the results. In  the limit as M -+ 0 for fixed ( X ,  Y ) ,  the velocity 
potential 9 satisfies Laplace’s equation 

(3.4) 

everywhere exterior to the vortex centres. On the other hand, for fixed (x’,y’) 
and M -+ 0, the Navier-Stokes equations reduce to a homogeneous wave equation 
for the ‘ outer ’ velocity potential Qo : 

a2+/ax2 + az+p  y2 = o 

If the fluid were truly incompressible there would be no induced flow from the 
duct. However, since we are considering slightly compressible flow we cannot 
exclude the possibility that the sound field interacts with the channel to produce 
an order M mass flux. We represent this unknown flow by the complex potential 
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MVg in the complex-cplane. Including this extra term, we obtain as solution to 
the ‘inner’ problem a modified form of (2.8): 

To obtain solutions for the ‘outer ’ potential valid inside and outside the duct 
we must match the ‘outer’ asymptotics of the incompressible field to a one- 
dimensional wave in the interior of the duct and a two-dimensional wave field 
exterior to the duct. 

Performing the interior matching first, we write the ‘inner’ potential q5 in 
terms of X = x‘/M, and determine the limit as M 3 0 in such a way that X --f - co 
with Y fixed inside the duct. Por large negative X we can write 

f ( 2 )  = 2. (3.7) 

The ‘outer ’ asymptotics of the ‘inner ’ field are 

$(x’/M’ 7 )  = y(7)  - (K/2n) 70(7) +LV(7)  x’, (3.8) 

the remaining terms being exponentially small. (2, = X ,  + iY, andf(2,) = to + ir, 
are used to represent the vortex position and its image in the 5 plane in non- 
dimensional form.) The ‘outer’ potential q50 must match the ‘inner’ solution 
as x’ -f 0 and satisfy a radiation condition as 2’ + - co. Applying the former 
condition, q5 in (3.8) must satisfy 

aq51a7 = aq51axt (3.9) 

and we obtain a relation between 7, 7, and V such that 

(3.10) 

Outside the duct, as 121 + 00, we can write 

f(2) = log,Z. (3.11) 

Writing Q(Z) in ‘outer’ variables and letting M -+ 0 we obtain on taking the real 
part of 51 

where ~ ( 7 )  = 2(Y0(7) -7d7)). (3.13) 

The ‘outer’ potential 4, is a solution of the two-dimensional wave equation (3.5), 
and as r --f 0, q5, must match the ‘outer’ asymptotics of 9 given by (3.12). In 
addition 4, must satisfy a hard-wall boundary condition 

29,/ay’ = 0 on 0 = + n  (3.14) 

and an outgoing wave radiation condition as r -+ 00. An immediate consequence of 
the m a t c h  and radiation conditions is that 

~ ( 7 )  + (K/2n) ~ o ( 7 )  = 0. (3.15) 
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On substituting for y in (3 .10)  we obtain an expression for the induced flow in 
terms of the parameters of the vortex motion; 

(3 .16)  

To solve for q50 in ( 3 4 ,  we take Fourier transforms in time, denoting trans- 
formed quantities with an asterisk, viz: 

(3 .17)  

Multiplying each term of (3 .5)  by eim* and integrating over all values of 7,  we 
find that 4: is a solution of the homogeneous Helmholtz equation 

(3 .18)  

We seek solutions of the form 

4: = a*(x’, w) +P*(x’, w) C O S B  (3 .19)  

subject to the appropriate transformed boundary conditions. The matching 
condition for 4: becomes 

lim a*(IMX, M Y ,  a) = M j V(7) eiw7d~10g R, 

lim P* ( M X ,  M Y ,  w) = - Sm g(7 )  e i m T d 7 .  
M+O R --m 

(3 .20)  

(3 .21)  

For positive frequencies the only solutions of (3.18) which can satisfy all these 
conditions are 

a” = A(w)Hp(wr),  

/3* = B(w)H$l)(wr). 

Hi1) and Hi1) denote Hankel functions of the first kind and of the zeroth and first 
order respectively. 

1 
03 

M-tO -m 

1 
For a c 0, we use the fact that 

$mx’, -a) = 4:(X’,w) (w > O ) ,  (3 .22)  

the overbar denoting complex conjugation. On applying the matching condition 
to CI* and P*, we find that 

and 

(3.23) 

(3 .24)  

Thus we have a solution to the ‘outer’ problem 

#$(XI, W) = A(w) Hi1)(wr) +B(w) HI1)(wr) cos 0 (3.25) 

in terms of known functions ro and g which are related to the unsteady vortex 
motion. Functions of position and time can in principle be obtained from (3.25) 
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by performing the inverse Fourier transform, although to attempt this numeric- 
ally would involve numerical computations of excessive length. 

As an alternative to working in frequency space, we can recognize directly 
that (3.12) may be identified with the ‘inner’ asymptotics of the sound field 
generated by compact dipole and weak monopole sources acting a t  the origin. 
The monopole strength per unit volume is 

while the dipole strength per unit volume is 

acting in the positive x direction. The wave field density p satisfies 

(3 .26)  

(3 .27)  

(3 .28)  

By writing (3 .28)  in non-dimensional space-time variables and solving, we obtain 

(3 .29)  

Figure 2 indicates how the functions ag1a.r and aq0/a7 vary with time for a 
typical vortex configuration and shows clearly how the unsteady variation of 
the ‘outer’ asymptotics of the incompressible field is concentrated into the 
period while the vortex is near the duct exit. 

With the help of some algebraic manipulation, and the application of results 
from the theory of generalized functions (Lighthill 1958) we can derive a formula 
for E ,  the total energy per unit length radiated to infinity in the sound field 
throughout all time : 

where 

(3 .30)  

(3 .31)  

Since M = U/c and the velocity scale U is proportional to the vortex strength K ,  
E varies as the fourth power of 6: (or the velocity scale U) .  This is characteristic 
of a two-dimensional dipole (Ffowcs Williams 1969). Numerical calculations were 
carried out to determine the order of magnitude of the non-dimensional co- 
efficient p, for various values of 6. The results show that p is 1500 when 8 = 0.1 
and decreases monotonically to approximately 30 when 8 = 1.45. Over the range 
0 < 6 < $77, the mean value of p is approximately 270. For &r < 6 < 77, changes 
in the unsteady hydrodynamic field are smaller, and as a result the duct radiates 
energy into the sound field less efficiently; the mean value of ,u in this case is 
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FIUURE 2. Variation of ag/& (solid li I )  and avo/& (broken line) with time: S = 0.65. The 
figures - 3.3 and - 4.8 refer to the value of x.inside and outside the duct respectively. 

about 1:O. In Q 4 we check these results obtained by matching with the theoretical 
predictions of Curle (1955) and Powell (1964), and deduce why the monopole 
and dipole sources are coupled in this particular way. 

4, Solutions to Lighthill’s equation 
The work which follows does not strictly speaking constitute an independent 

check on the solution of Q 3 since we use the value obtained in that section for 
the induced velocity V ;  nevertheless, it gives a useful insight into the origin of 
the sources which generate the sound field. We use the familiar idea in aero- 
dynamic sound problems of separating the flow field into distinct generation 
and propagation regions. The effective compact source region is assumed to be 
bounded near the origin by the surface So + 8, of figure 3, on and near which the 
various flow parameters can be determined from the ‘ incompressible ’ analysis 
of $5 2 and 3. 
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FIGURE 3. S = S,+S,fS,. 

The exact equations of motion for an inviscid fluid can be written as 

appt + a(pu , )px ,  = 0, (4.1) 

( p  is the pressure, p the density, u = (u1, u2, us) the velocity and w = curl u is 
the vorticity vector). 

Lighthill (1952) showed how the two equations can be combined to form an 
inhomogeneous wave equation for p: 

(4.3) 

where q.j = puiuj + ( p  - c”) sip (4.4) 

If V’ is the volume of fluid inside S, then Curle (1955) obtained a general solution 
to (4.3) in the presence of S which can be written as 

( r  = Ix-yI, [f] = f(y, t - r / c )  and n = (II, Z2,b3) is the unit outward normal from 
the fluid). For convenience we present? the solution in dimensional variables and 
as integrals over three space co-ordinates (yl, yz, ys). Since the only dependence 
on y3 arises from the retarded times the y3 integration is effectively over time. 
By a suitable co-ordinate transformation (Ffowcs Williams & Hawkins 1968) 
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we can recover the usual form of solutions to the two-dimensional wave equation 
(cf. equation (3.29)). 

The first term of (4.5) represents a volume distribution of quadrupole sources 
and can be neglected to O(M2)  compared with the surface integrals. We can also 
neglect density variations in the compact sound-producing region. The surface 
integrals vanish identically on the distant surface S,. In addition, if the surface 
S, is positioned far away from the source region, but close to the exit on a wave- 
length scale, the conditions there can be represented by their asymptotic values 
in the hydrodynamic far field. Equation (4.5) can then be simplified to give 

The boundary .So consists of streamlines around each wall of the duct, so that 

Thus the theory predicts that the acoustic field is generated by compact dipole 
and monopole sources acting at the co-ordinate origin. 

Before investigating the source strengths more closely we consider briefly 
another form of solution to Lighthill’s equation (4.3), derived by Powell (1964) 
in his theory of vortex sound. Under the same assumptions as were used to obtain 
(4.7), Powell’s solution can be written as 

1 xi 2 

4nc2 1x1 at s, 
~ ~ ( w x u ) ~ d V .  (4.8) 

On S,, 4poma is of O(M2)  and can be neglected. Since we have a delta-function 
distribution of vorticity the volume integral in (4.8) takes a particularly simple 
form; in fact, the axial component of 

c 
J powxudV 
Y, 

(4-9) 

is 2p0K @,/at, which is equivalent to a force acting on the fluid in the positive-x, 
direction. It is well known that the potential flow of an inviscid incompressible 
fluidround a sharp edge induces a suction (Batchelor 1967, p. 412). By integrating 
the pressure round the ‘streamlines’ X,, which we subsequently allow to collapse 
onto each wall of the channel, we can determine this ‘edge force ’. However, since 
the suction arises from the r-4 velocity singularity at the edge, we find that 

(4.10) 

On substituting for p and ui on XI we find that the surface integrals of (4.8) 
produce an axiaI dipole of strength - 2p0Ka70/2t per unit volume and a weak 
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monopole of strength -2poKMavo/at per unit volume. Thus by employing 
Powell's result we have recovered the solution obtained by matching, and f urther 
more we see that the distribution of axial dipole sources on the exit plane drives 
a monopole-producing mass efflux from the duct, and these two sources supple- 
ment the apparent dipole that Powell recognized at  the vortex centres. 

Returning to Curle's solution we see that it differs from Powell's formulation 
in replacing the volume integral of poco x u by a surface integral of the pressure 
over So, which we call the 'edge force'. We now show that these two terms are 
in fact identical to first order in M .  The 'edge force' l$ can be written as 

n 

(4.11) 

Zi(pcYij +pouiuj) dS. (4.12) s = sso+sl+Sn+~* S,+S, +s* 
lj(P8ij + po ui Uj) dX - 

Applying the divergence theorem and using (4.2) gives 

The volume V' has here been divided into two parts (see figure 3). The first, V,, 
contains irrotational flow only, while the second, V*, bounded by the surface S* 
of radius E ,  contains vorticity. In  the limit as B -+ 0, the contribution from the 
volume integral over T'* is of O(e) and so 

On S,  and S,, quadratic terms in ui can be neglected andp = - a(poq5)/8t. Hence 

(4.16) 
= - p O 1 s * l t ~ ( p O + ) d ~ -  a 

On X*, however, we can write p +Qpou2 = - a(poq5)/at, and therefore 

Again as e + 0, the first integral tends to zero, and finally we have that 
n 

(4.17) 

(4.18) 

(4.19) 

That the 'edge force' is equal to the 'vortex force' (4.19) can also be shown by 
direct evaluation of the edge force. Following the method of Batchelor we de- 
termine the force in the axial direction to be 

(4.20) A @ )  = PI = &?oA2n, 

where (4.21) 
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in the notation of $9  2 and 3. By using the formula for ay/at given by (2.9), i t  is 
a relatively straightforward matter to show that the edge force E; is indeed equal 
in magnitude to the so-called vortex force. 

5. Motion of a single vortex 
To determine the radiation induced by the motion of a single vortex coupled 

to a semi-infinite duct we employ the analytic scheme of $32 and 3 again. To 
reduce repetition, the results of each stage in the calculation are stated quite 
briefly. 

Suppose that an infinite channel is defined in the complex-c plane as before, 
and consider a single negative line vortex filament, strength K ,  at 

The complex potential is given by 

5 = <o+i(n-6).  

Transforming to the complex-2 plane we obtain 

where v ( t )  = 7r-Imf(Zo). 
In  addition we have 

(5.3) 

a!2 - = u-*v . K 1  = -(-) (cotz(f(2)-f(20))-cot-(~(~)-f(zo)-z;u)) 1 
I 

a2 87r 1+efcz) 4i 
( 5 . 4 )  

and expanding (5.4) about 2, we obtain a differential relation governing the 
vortex path: 

The paths obtained by numerical integration for different values of 6 show 
that the path of a single vortex is similar to that shown in figure 1, for an in- 
dividual member of a vortex pab near the channel wall. In this case, however, 
zero propagation velocity occurs when 6 = n; thus for 0 < 6 < n a vortex stai ting 
inside the duct will always return to x = - 00 outside the duct. As x + - GO, the 
vortex speed inside the duct tends to (K/8n)cot46, and outside the duct to 

Since the vortex motion exhibits a rapid change near the duct exit, we can 
formulate the singular perturbation problem in the same way as in $ 3 .  The 
main difference in the analysis is that we only need to match the ‘inner’ hydro- 
dynamic solution to an exterior two-dimensional wave field, there being no 
induced flow from the duct. 

The potential solution to the ‘inner ’ problem can be written in non-dimensional 

K/4n(ImZo - f ( 2 0 ) )  * 
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- 
.y= -2.7 

Insidc duct 

FIGURE 4. Time variation of ah/&: 6 N 0.3. 

Writing Q in ‘outer ’ variables and letting M + 0 we obtain 

with (B.8) 

Let e-iwTq5$(x’, w) dw (5.9) 

then q5; satisfies the two-dimensional homogeneous Helmholtz equation 

(5.10) 

Solving for ($ subject to the appropriate transformed boundary conditions, 
we obtain 

&(x’, w) = A(w) M%Ht)(wr) sin 40. (5.11) 

To satisfy the radiation condition a t  infinity we have to put Re y(7)  = Kv(7)/4n, 
and the coefficient A(a)  is determined through matching 4s: to the Fourier 
transform of the ‘inner ’ potential $ : 

(5.12) 
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Again, using simple generalized function theory and the results (5.11) and 
(5.12), it is possible to derive an equation for E ,  the total energy per unit length 
radiated to infinity in the sound field throughout all time: 

p M K 2  ah 
= (z) dr. (5.13) 

Since the velocity scale U depends on the vortex strength K ,  we see that E is 
proportional to K3, a result typical of two-dimensional edge scattering problems. 
Figure 4 illustrates the time behaviour of ah/& and shows clearly that almost all 
the energy radiated as sound originates while the vortex is close to the duct exit. 

In  the limit as 6+ 0 the vortex path tends to the path followed by a single 
vortex coupled to a half-plane, Using Crighton’s solution for the value of the 
coefficient of the edge singularity in the latter problem, we can compute corre- 
sponding values of E. With 6 = 0.1 the ratio of the energy scattered by the 
duct to the energy scattered by a half-plane is 0.56. This result compares quite 
favourably with the theoretical prediction of Ckighton & Leppington (1971) that 
the ratio of duct and half-plane efficiencies should he 0.5. Evaluating 

for various values of 8, we obtain numerical results which change slowly from 
0.19 when S = 0.01 to 0-3 when 6 = 2-65 and then fall to zero at  6 = 7r. 

6. Summary 
We have discovered that the sound fields obtained when vortices exhaust 

from two-dimensional ducts fall into two distinct classes which correspond to 
the presence or absence of symmetry in the unsteady flow. In the latter case the 
solution differs only in the coefficient of the edge singularity from the analogous 
result for scattering from a single half-plane. However, when the edge scattering 
effects cancel we find that the velocity singularities at  the edges of the duct still 
play a novel and fundamental role in determining the acoustic field. It is perhaps 
surprising that the general theories of Curle and Powell should be related through 
the identity of the ‘edge’ and ‘vortex’ forces. It is perhaps also surprising that 
no difficulties arise over the slow decay of the velocity field as r --f 00 in the 
hydrodynamic flow. These could result in the problem being improperly posed 
in the usual sense of being able to separate the regions of sound generation and 
wave propagation. The successful matching (of the inner and outer flows as well 
as Lighthill’s theory with the singular perturbation scheme) seems to allay these 
doubts and justifies the steps made in § 4, where the sound field is supposed to be 
generated by a compact source region. 
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